Decentralised L1 Adaptive Primary Controllers and Distributed Consensus-Based Secondary Control for DC Microgrids with Constant-Power Loads

نویسندگان

  • Daniel O'Keeffe
  • Stefano Riverso
  • Laura Tendillo-Albiol
  • Gordon Lightbody
چکیده

Constant-power loads are notoriously known to destabilise power systems, such as DC microgrids, due to their negative incremental impedance. This paper equips distributed generation units with decentralised L1 adaptive controllers at the primary level of the microgrid control hierarchy. Necessary and sufficient conditions are provided to local controllers for overall microgrid stability when constant-power loads are connected. The advantages of the architecture over conventional heuristic approaches are: (i) scalable design, (ii) plug-and-play functionality, (iii) well defined performance and robustness guarantees in a heterogeneous and uncertain system, and (iv) avoids the need for online measurements to obtain non-a priori system impedance information. The proposed primary control architecture is evaluated with distributed consensus-based secondary level controls using a bus-connected DC microgrid, which consists of DC-DC buck and boost converters, linear and non-linear loads. Stability of the overall hierarchical control system is proven using a unit-gain approximation of the primary level.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Voltage Control of DC Islanded Microgrids: Scalable Decentralised L1 Adaptive Controllers

Voltage stability is a critical feature of an efficiently operating power distribution system such as a DC islanded microgrid. Large-scale autonomous power systems can be defined by heterogeneous elements, uncertainty and changing conditions. This paper proposes a novel scalable decentralised control scheme at the primary level of the typical hierarchical control architecture of DC islanded mic...

متن کامل

Voltage Control and Load Sharing in a DC Islanded Microgrid Based on Disturbance Observer

Increasing DC loads along with DC nature of distributed energy resources (DERs) raises interest to DC microgrids. Conventional droop/non-droop power-sharing in microgrids suffers from load dependent voltage deviation, slow transient response, and requires the parameters of the loads, system and DERs connection status. In this paper, a new nonlinear decentralized back-stepping control strategy f...

متن کامل

A Robust Control Strategy for Distributed Generations in Islanded Microgrids

This paper presents a robust control scheme for distributed generations (DGs) in islanded mode operation of a microgrid (MG). In this strategy, assuming a dynamic slack bus with constant voltage magnitude and phase angle, nonlinear equations of the MG are solved in the slack-voltage-oriented synchronous reference frame, and the instantaneous active and reactive power reference for the slack bus...

متن کامل

A Distributed Scalable Architecture using L1 Adaptive Controllers for Primary Voltage Control of DC Microgrids

This paper proposes a new distributed control architecture for distributed generation units in heterogeneous DC islanded microgrids. Each unit is equipped with state-feedback baseline and augmenting L1 adaptive voltage controllers at the primary level of the microgrid control hierarchy. Local controller synthesis is scalable as it only requires information about corresponding units, couplings, ...

متن کامل

Hierarchical Control of Multiple DC-Microgrids Clusters

This paper presents a distributed hierarchical control framework to ensure reliable operation of dc microgrid (MG) clusters. In this hierarchy, primary control is used to regulate the common bus voltage inside each MG locally. An adaptive droop method is proposed for this level, which determines droop coefficients according to the state-of-charge (SOC) of batteries automatically. A small-signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018